Hybrid Simulations of Reaction-Diffusion Systems in Porous Media
نویسندگان
چکیده
Hybrid or multiphysics algorithms provide an efficient computational tool for combining microand macroscale descriptions of physical phenomena. Their use becomes imperative when microscale descriptions are too computationally expensive to be conducted in the whole domain, while macroscale descriptions fail in a small portion of the computation domain. We present a hybrid algorithm to model a general class of reaction-diffusion processes in granular porous media, which includes mixing-induced mineral precipitation on, or dissolution of, the porous matrix. These processes cannot be accurately described using continuum (Darcy-scale) models. The pore-scale/Darcy-scale hybrid is constructed by coupling solutions of the reaction-diffusion equations (RDE) at the pore scale with continuum Darcy-level solutions of the averaged RDEs. The resulting hybrid formulation is solved numerically by employing a multiresolution meshless discretization based on the smoothed particle hydrodynamics method. This ensures seamless noniterative coupling of the two components of the hybrid model. Computational examples illustrate the accuracy and efficiency of the hybrid algorithm.
منابع مشابه
Lattice Boltzmann modeling of two component gas diffusion in solid oxide fuel cell
In recent years, the need for high efficiency and low emission power generation systems has made much attention to the use of fuel cell technology. The solid oxide fuel cells due to their high operating temperature (800 ℃ -1000 ℃) are suitable for power generation systems.Two-component gas flow (H2 and H2O) in the porous media of solid oxide fuel cell’s anode have been modeled via lattice Boltz...
متن کاملCombined effect of hall current and chemical reaction on MHD flow through porous medium with heat generation past an impulsively started vertical plate with constant wall temperature and mass diffusion
Unsteady flow with magneto-hydrodynamics and heat generation through porous medium past an impulsively started vertical plate with constant wall temperature and mass diffusion is considered here. The effect studied is a combination of Hall current and chemical reaction. The motivation behind this study is the applications of such kind of problems in industry. In many industrial applications ele...
متن کاملEffects of thermal diffusion and chemical reaction on MHD transient free convection flow past a porous vertical plate with radiation, temperature gradient dependent heat source in slip flow regime
An analytical investigation is conducted to study the unsteady free convection heat and mass transfer flow through a non-homogeneous porous medium with variable permeability bounded by an infinite porous vertical plate in slip flow regime while taking into account the thermal radiation, chemical reaction, the Soret number, and temperature gradient dependent heat source. The flow is considered u...
متن کاملStructural disorder and anomalous diffusion in random packing of spheres
Nowadays Nuclear Magnetic Resonance diffusion (dNMR) measurements of water molecules in heterogeneous systems have broad applications in material science, biophysics and medicine. Up to now, microstructural rearrangement in media has been experimentally investigated by studying the diffusion coefficient (D(t)) behavior in the tortuosity limit. However, this method is not able to describe struct...
متن کاملImpact of Internal Structure on Foam Stability in Model Porous Media
Application of foam in EOR, increases macroscopic sweep efficiency via awesome increscent of mobility control. Macroscopic manifestation of foam application performance in porous media is complex process that involves several interacting microscopic foam events. Stability as an important factor in foam injection within large reservoirs, depends on several variables including oil saturation, con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 30 شماره
صفحات -
تاریخ انتشار 2008